Differentially Private Search Log Sanitization with Optimal Output Utility

Yuan Hong†, Jaideep Vaidya‡, Haibing Lu†, Mingrui Wu§
†MSIS and CIMIT, Rutgers University, Newark, NJ 07102, USA
‡{yhong, jsvaidya}@cimic.rutgers.edu
§OMIS, Santa Clara University, CA 95053, USA, hlu@scu.edu
§Microsoft, Redmond, WA 98052, USA, mingruiw@microsoft.com

ABSTRACT
Web search logs contain extremely sensitive data, as evi-
denced by the recent AOL incident. However, storing and
analyzing search logs can be very useful for many purposes
(i.e. investigating human behavior). Thus, an important
research question is how to privately sanitize search logs.
Several search log anonymization techniques have been pro-
posed with concrete privacy models. However, in all of these
solutions, the output utility of the techniques is only eval-
uated rather than being maximized in any fashion. Indeed,
for effective search log anonymization, it is desirable to de-
rive the outputs with optimal utility while meeting the pri-

Categories and Subject Descriptors: H.2.0 [Database
Management]: Security, integrity, and protection; H.3.m [In-
formation Storage and Retrieval]

General Terms: Security

Keywords: Search Logs, Differential Privacy, Optimization

1. INTRODUCTION
Search engines are used by millions, if not billions, of people
every day. The queries posed by the users form a large

This work is supported in part by the National Science
Foundation under Grant No. CNS-0746943 and the Trustees
Research Fellowship Program at Rutgers, the State University
of New Jersey.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00

volume of data that can give great insight into human behav-
ior via their search intent. Indeed, such data is invaluable
for researchers and data analyzers in numerous fields [13].
For example, search engines themselves can use web search
logs to identify common spelling errors, to recommend sim-
ilar queries, or to expand queries. Many other applications
also make use of search log data, such as the analysis of liv-
ing habits from daily search, and the detection of epidemics
[11]. For this reason, search log data is collected, stored, and
analyzed in different ways by all search engines.

However, one problem with the storage and release of
search log data is the potential for privacy breach. The
queries that a user poses may sometimes reveal their most
private interests and concerns. Thus, if search log data is
published without sanitization or with trivial anonymization
(such as simply replacing user ids by pseudonyms), many
sensitive queries and clicks can be explicitly acquired by ad-

In recent years, several search log anonymization tech-
niques have been proposed in the literature to resolve the
above problems [21, 6, 19, 16, 17, 20, 23]. Several anonymity
models have been proposed for this domain along with cor-
responding anonymization algorithms. However, their basic
premise is simply that the algorithm must satisfy the privacy
requirements without worrying about the tradeoff between
privacy and utility. Ideally, what is needed is a strategy that
can maximize the utility while satisfying a given privacy re-

Please note that the text provided is a natural representation of the document content.
on this challenging and practical problem. In this paper, we take the first step towards tackling this problem in the domain of search log release by formulating utility-maximizing problems while ensuring a rigorous privacy standard.

1.1 Contribution

Given a particular privacy notion, the utility-maximizing problem requires finding a way to anonymize search logs in a manner that satisfies the privacy standard and simultaneously achieves the optimal output utility. This requires deciding on a suitable privacy requirement as well as appropriate data utility measure. While several different anonymity models have been proposed in the literature, in this paper, we utilize the robust privacy definition of differential privacy [8] (which lowers the privacy breach risk even if the adversaries hold arbitrary prior knowledge). We also define several different notions of utility and propose differentially private sanitization methods that can maximize the output utility. Thus, the main contributions of this paper are summarized as follows:

- The differentially private randomization in prior work (Korolova et al. [20] and Götz et al. [12]) ensures differential privacy by adding Laplacian noise to the aggregated query and clicked url counts. However, such approaches break the association between distinct query-url pairs in the output since all the user-IDs have been removed, which might be useful in only a few applications. Therefore, we propose differentially private algorithms based on a different randomization strategy: *sample user-IDs for every click-through query-url pairs using multinomial distribution*, which preserves user-IDs. This, to our knowledge, is the first randomization strategy to generate output with identical schema as the input search log. Thus, the sanitized search log can be analyzed in exactly the same fashion and for the same purpose as the input.

- Within our approach, the randomization algorithm also ensures the utility-maximized output that is still differentially private. To do this, we formally define the utility-maximizing problem: find an optimal sanitization that maximizes the output utility while satisfying differential privacy. Specifically, for quantifying the output utility, we define three different utility notions (measuring the utility of frequent click-through query-url pairs, the query-url pair diversity, etc.) that could benefit different applications (essentially, any utility measure can be coupled into our differentially private sanitization by replacing the utility objective function). We also prove that our sanitization satisfies differential privacy;

- We transform the utility-maximizing problems into standard optimization problems. We can now leverage prior developed effective solvers and adapt them to our problem. We experimentally validate the utility using real data sets.

The remainder of this paper is organized as follows. Section 2 reviews the related literature. In Section 3, we present our privacy model and the sanitization process. Section 4 introduces the constraints that guarantee differential privacy. We then propose three different ways to generate output with optimal utility while ensuring differential privacy in Section 5. Section 6 evaluates the output utility of the sanitization approaches. Finally, Section 7 concludes the paper.

2. RELATED WORK

2.1 Search Log Anonymization

Following the AOL search log incident, there has been some work on privately publishing search logs. Adar [1] proposes a secret sharing scheme where a query must appear at least t times before it can be decoded, which may potentially remove too many harmless queries. Kumar et al. [21] propose an approach that tokenizes each query tuple and hashes the corresponding search log identifiers. However, inversion cannot be done using just the token frequencies, and serious leaks are possible even if the order of tokens is hidden.

More recently, some anonymization models [20, 16, 17, 23] have been developed for search log release. He et al. [16], Hong et al. [17] and Liu et al. [23] anonymized search logs based on k-anonymity which is not as rigorous as differential privacy [12]. Korolova et al. [20] first applied the rigorous privacy notion – differential privacy to search log release by adding Laplacian noise. However, the released result of this is the statistical information of queries and clicks where all users’ search queries and clicks are aggregated together (without individual attribution). The data utility might be greatly reduced since the association between query-url pairs has been removed (the published data in Götz et al. [12] also suffers this constraint). With the released data, we cannot develop personalized query suggestion or recommendation for search engines, and also, we cannot carry out human behavior research since the output data do not include the information that any two queries belong to the same user. Also, the utility in [20] is merely evaluated but not shown to be maximized. Adding Laplacian noise to the counts of selected queries and urls is straightforward and we cannot directly maximize the output utility with optimization models. Alternatively, our paper is to seek the maximum output utility for a novel differentially private sanitization mechanism which generates outputs with the intact schema as the original search log.

Moreover, Götz et al. [12] analyzed algorithms of publishing frequent keywords, queries and clicks in search logs and conducted a comparison for two relaxations of ϵ-differential privacy (note that relaxations are indispensable in search log publishing). Our work utilizes the stronger relaxation of ϵ-differential privacy – probabilistic differential privacy. Since we explore the optimal utility in our differentially private sanitization which outputs intact search logs rather than the results of counting queries/urls over the search log, our work has a completely different focus, compared with them [12]. In addition, Feld et al. [9] presented a framework for collecting, storing and mining search logs in a distributed scenario, which guarantees privacy with several policies.

2.2 Differential Privacy

In the context of relational data anonymization, Dwork et al. [7, 8] have proposed the rigorous privacy definition of differential privacy: a randomized algorithm is differentially private if for any pair of neighboring inputs, the probability of generating the same output, is within a small multiple of each other. This means that for any two datasets which are close to one another, a differentially private al-
algorithm will behave approximately the same on both data sets. This notion provides sufficient privacy protection for users regardless of the prior knowledge possessed by the adversaries. This has been extended to data release in various different contexts besides search logs. Specifically, Xiao et al. [27] introduced a data publishing technique which ensures \(\epsilon \)-differential privacy while providing accurate answers for range-count queries. Hay et al. [15] presented an efficient differentially private algorithm for releasing a provably private estimate of the degree distribution of a network. McSherry et al. [25] solved the problem of producing recommendations from collective user behavior while providing differential privacy for users. Recently, Chen et al. [5] published the set-valued data with differential privacy guarantee. Our work follows the same line of research.

2.3 Utility Maximization

In microdata disclosure, Bayardo et al. [4] and LeFevre et al. [22] raised the optimal \(k \)-anonymity and the optimal multidimensional anonymization problem respectively. Recently, Ghosh et al. [10] introduced a utility maximizing mechanism for releasing a statistical database. However, there is little work on this topic in the context of differential privacy guaranteed search log release. To our knowledge, we take a first step towards addressing this deficiency.

3. MODEL

3.1 Differential Privacy

Our objective is to privately sanitize the input search logs that includes pseudonymous user-IDs, search queries, clicked urls and the counts of every user’s click-through query-url pairs. Hence, we ensure that the output has the identical schema as the input: every single tuple in the output includes a pseudonymous user-ID, a click-through query-url pair and its count for this user. Intuitively, we consider two search logs to be neighbors if they differ by an arbitrary user’s (all) query tuples. Hence, we define every user’s all query tuples in a search log \(D \) as its user log.

Definition 1. (User Log \(A_k \)) Given a search log \(D \), we denote each user \(s_k \)’s user log \(A_k \) as all its query tuples in \(D \), where every single tuple \(\{s_k, q_i, u_j, c_{ij}k\} \in A_k \) includes a pseudonymous user-ID \(s_k \), a query \(q_i \), a url \(u_j \) and the count \(c_{ij}k \) of query-url pair \((q_i, u_j) \) belonging to user \(s_k \).

Clearly, every search log \(D \) consists of numerous individual user logs \(D = \bigcup_{s_k \in D} A_k \). Given two neighboring input search logs \(D \) and \(D' \) (w.o.l.g. \(D = D' + A_k \)), ensuring \(\epsilon \)-differential privacy for all the outputs might be impossible: for any output \(O \) including items in \(D \) but not in \(D' \) (such as user-ID \(s_k \)), the probability that generating \(O \) from \(D' \) is zero but from \(D \) is non-zero, hence the ratio between the probabilities cannot be bounded by \(e^\epsilon \) (due to a zero denominator). We thus adopt the following relaxed notion of differential privacy (using our notations):

Definition 2. (\((\epsilon, \delta) \)-probabilistic differential privacy [24, 12]) A randomization \(R \) satisfies \((\epsilon, \delta) \)-probabilistic differential privacy if for any input search log \(D \), we can divide the output space \(\Omega \) into two sets \(\Omega_1 \), \(\Omega_2 \), such that (1) \(\Pr[R(D) \in \Omega_1] \leq \delta \), and for \(D \)’s any neighboring search log \(D' \) and any output \(O \in \Omega_2 \): (2) \(e^{-\epsilon} \leq \Pr[R(D') \in \Omega | R(D) = O] / \Pr[R(D) = O] \leq e^{\epsilon} \).

The above probabilistic differential privacy ensures that \(R \) satisfies \(\epsilon \)-differential privacy with high probability (no less than \(1 - \delta \)) [12]. In this definition, the set \(\Omega_1 \) includes all privacy-breaching outputs for \(\epsilon \)-differential privacy where the probability of generating such outputs is bounded by \(\delta \). Specifically in our sanitization (w.o.l.g. \(D = D' + A_k \)), since we retain user IDSs in the output and \(D' \) does not contain \(s_k \), we can only consider \(\Omega_1 \) as the output space where all outputs in \(\Omega_1 \) include user-ID \(s_k \) (because \(\epsilon \)-differential privacy cannot be achieved when \(D' \) differing in user \(s_k \)’s user log \(A_k \) and the output \(O \) including \(s_k \)). Hence, the probability \(\Pr[R(D) \in \Omega_1] \) should be no greater than \(\delta \) (the probability of \(s_k \) existing in the overall output space \(\Omega \) should be bounded by \(\delta \)). Moreover, for any output \(O \in \Omega_2 \), two ratios should be bounded by \(e^\epsilon \) for achieving \(\epsilon \)-differential privacy. Definition 2 has been proven to be stronger than the privacy notion of Korolova et al.’s work [20] (indistinguishability differential privacy [7]) by Götz et al. [12] (as also shown in Section 4.3).

All the sanitization methods addressed in this paper are required to satisfy this robust and rigorous privacy definition. No matter how much prior knowledge is owned by adversaries, we can lower the privacy risk by bounding the probabilities that any arbitrary two neighboring inputs produce any possible output.

3.2 Search Log Sanitization Process

The most sensitive values in search logs are the click-through information. Sometimes search queries may be more sensitive than the clicked urls in search logs (i.e. query “diabetes medicine” and click “www.walmart.com”), or vice versa (i.e. query “medicine” and click “www.cancer.gov”). We thus consider each distinct click-through query-url pair (simply denoted as query-url pair) as a combination of the sensitive values in the search logs. In our privacy model, Definition 2 ensures that adding any user’s all search information (user-ID, query-url pairs and the counts) in the input does not cause any additional risk.

Table 1 presents some frequently used notations in our model: we denote \(c_{ij}k \) as the input count of any query-url pair \((q_i, u_j) \) and the set of these counts \(\{c_{ij}k\} \) constitutes the input query-url histogram. Similarly, \(x_{ij}k \) represents the output count of \((q_i, u_j) \) and the set of these counts \(z = \{x_{ij}k\} \) forms the output query-url histogram. Finally, the output counts of all triplets \((q_i, u_j, s_k) \) form the output query-url-user histogram which is randomly sampled (the sampling process will be given later on). Similarly, the deterministic counts of all triplets \((q_i, u_j, s_k) \) in the input form the input query-url-user histogram.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>((q_i, u_j))</td>
<td>an arbitrary query-url pair in the input/output</td>
</tr>
<tr>
<td>((q_i, u_j, s_k))</td>
<td>any user (s_k)’s arbitrary query-url pair ((q_i, u_j))</td>
</tr>
<tr>
<td>(c_{ij}k)</td>
<td>the total count of ((q_i, u_j)) in the input</td>
</tr>
<tr>
<td>(x_{ij}k)</td>
<td>the total count of ((q_i, u_j)) in the output</td>
</tr>
<tr>
<td>(x_{ij}k) in (the optimal solution: (z_{ij}))</td>
<td></td>
</tr>
<tr>
<td>(x_{ij}(\text{random variable}))</td>
<td>the count of triplet ((q_i, u_j, s_k)) in a sample output</td>
</tr>
<tr>
<td>(x_{ij}(\text{random variable})) in ((x_{ij}k \text{ triplets} {q_i, u_j, s_k} \text{ are sampled in } z_{ij}))</td>
<td></td>
</tr>
</tbody>
</table>

Algorithm 1 illustrates two steps of our sanitization. We first compute the optimal output counts for all the query-url pairs in the input search log \(D \), and then generate the output \(O \) by sampling user-IDs for each of them with multinomial distribution [2] (the details of this multinomial san-
Figure 1: An Example of the Sanitization Algorithm

(a) Sanitization with Multinomial Sampling

(b) A Sample Output

Table 1: Sanitization Algorithm

<table>
<thead>
<tr>
<th>User-ID (s)</th>
<th>Click-through query-url pair (q, u)</th>
<th>Count (c_q,u)</th>
<th>Compute the optimal output counts of all the query-url pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>081</td>
<td>pregnancy test nyc, medicinnet.com</td>
<td>2</td>
<td>pregnancy test nyc, medicinnet.com</td>
</tr>
<tr>
<td></td>
<td>google, google.com</td>
<td>15</td>
<td>google, google.com</td>
</tr>
<tr>
<td>082</td>
<td>car price, kbb.com</td>
<td>2</td>
<td>(the sanitization/randomization algorithm is guaranteed to be differentially private)</td>
</tr>
<tr>
<td></td>
<td>google, google.com</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>083</td>
<td>google, google.com</td>
<td>17</td>
<td>diabetes medecine, walmart.com</td>
</tr>
<tr>
<td></td>
<td>book, amazon.com</td>
<td>1</td>
<td>car price, kbb.com</td>
</tr>
<tr>
<td></td>
<td>car price, kbb.com</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Output Search Log

<table>
<thead>
<tr>
<th>User-ID (s)</th>
<th>Click-through query-url pair (q, u)</th>
<th>Count (c_q,u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>081</td>
<td>pregnancy test nyc, medicinnet.com</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>book, amazon.com</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>google, google.com</td>
<td>8</td>
</tr>
<tr>
<td>082</td>
<td>car price, kbb.com</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>google, google.com</td>
<td>3</td>
</tr>
<tr>
<td>083</td>
<td>google, google.com</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>book, amazon.com</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>car price, kbb.com</td>
<td>3</td>
</tr>
</tbody>
</table>

Input Search Log

Multinomial Sampling

Output Search Log

For every query-url pair (q, u), the shape of the output query-url-user histogram is differentially private (i.e., the output with optimal utility can be generated by sampling user-IDs with the above output counts of all query-url pairs (the probability of every sampled outcome in one trial is given by the input D)).

1. The number of trials for (q, u)’s user-ID sampling is given as \(x_q^* \) (optimal solution \(x^* = \{ x_q^* \} \)).
2. In every multinomial trial for any query-url pair (q, u), the probability that any user-ID \(s_k \) is sampled is \(c_{ijk}/c_{ij} \). Specifically, i.e., “car price, kbb.com” in Figure 1, the probability that user 082 is sampled is \(\frac{3}{20+0+0} = \frac{3}{20} \). However, the probability that user 081 is sampled for this query-url pair is 0. In addition, the expected value of every random variable \(x_{ijk} \) can be derived as \(E(x_{ijk}) = x_{ij} \cdot c_{ijk}/c_{ij} \). Thus, given an output count \(x_{ij}^* \) (optimal) for any query-url pair \((q, u) \), the shape of the input/output query-url-user histograms w.r.t. only query-url pair \((q, u) \) (illustrating the individual counts of \((q, u) \) held by distinct users) should be analogous (this is guaranteed by multinomial distribution). i.e. the input and output query-url-user histogram w.r.t. “google, google.com”, even if the output count \(x_{ij}^* = 20 \) \(< c_{ij} = 15 + 7 + 17 = 39 \), the shape of histograms \(\{8, 3, 9\} \) (in a randomized output, see Figure 1(b)) and \(\{15, 7, 17\} \) (in the input) is similar.
3. If \(\forall (q, u) \), the Input Support (denoted as \(\sum_{s_k} c_{ijk} \)), is close to the Output Support (denoted as \(\sum_{s_k} c_{ijk} \)), the shape of the output query-url histogram can be maximally preserved. At this time, after sampling user-IDs with the above output counts of all query-url pairs (or called output query-url histogram), the shape of the output query-url-user histogram can be maximally preserved as well.

Actually, one of our utility-maximizing problems is to seek the optimal output utility that minimizes the sum of the support distances for all frequent query-url pairs (see the definition and details in Section 5.2, if pursuing the minimum sum of support distances for all query-url pairs, we can lower the minimum support threshold). Thus, once the sum of the support distances is minimized (utility-maximizing problem can do so, i.e., it figures out that the distance between \(\sum_{s_k} x_{ij} \) and \(\sum_{s_k} x_{ij} \) is minimized while satisfying some privacy guarantee constraints), the shape of the input/output query-url-user histograms can be analogous (i.e. see the counts in the left table of Figure 1(a) and Figure 1(b)).
Input/Output is indeed identical since we can sort the output by the sampled user-IDs, as shown in Figure 1(b) where the association between query-url pairs and the shape of query-url-user histogram can be preserved).

4. PRIVACY GUARANTEE CONDITIONS

Assume that R is a sanitization algorithm that samples user-IDs for every query-url pair (q_i, u_j) with its total output count x_{ij}. Since the sampling procedures for all query-url pairs are independent, for any input D ($\forall x_{ijk}$ is given) and a possible output O ($\forall x_{ij} \in O$ is also given), the probability $Pr[R(D) = O]$ can be computed in terms of the probability mass function of multinomial distribution [2]:

$$Pr[R(D) = O] = \prod_{(q_i, u_j) \in O} \frac{x_{ijk}}{x_{ij}} \cdot \left(\frac{c_{ijk}/c_{ij}}{x_{ij} - 1} \right) \tag{1}$$

Indeed, $Pr[R(D) = O]$ is determined by x_{ij} and $\{x_{ijk} \in D, \forall x_{ijk} \}$ and x_{ij}. Given input D, $\{x_{ijk}, \forall x_{ijk} \}$ are constants. Hence, if $\forall (q_i, u_j) \in D$, the output count x_{ij} is determined, we can compute the probability $Pr[R(D) = O]$ for any output $O \in \Omega \ (\forall x_{ijk} \in O)$, for any output space Ω that satisfies all the probability bounding conditions in Definition 2 for an output space split $\Omega = \Omega_1 \cup \Omega_2$. Using this we can formulate the constraints (satisfying differential privacy) for variables: the counts of all query-url pairs $x = \{x_{ijk} \}$ in all the possible outputs Ω.

Without loss of generality, we let $D = D' + A_k$ where D and D' differ in an arbitrary user-ID s_k user log A_k. Thus, we first derive the probabilities in Definition 2 for all O in the output space Ω, and then deduce the constraints for satisfying differential privacy.

4.1 Probabilities in Definition 2

Due to $D = D' + A_k$, the user-ID s_k might be sampled into the output O if starting from D. Thus, for all outputs O which contain s_k, we have $Pr[R(D') = O] = 0$ (since $s_k \not \in D'$). Recall that, given $A_k = D - D'$ (or $A_k = D - D$), we can only divide the output space Ω into two sets Ω_1 and Ω_2 as: (1) every output O in Ω_1 includes s_k; (2) every output O in Ω_2 does not include s_k, because Ω_1 should includes all the exceptional outputs that violates ϵ-differential privacy. We thus bound the probabilities per Definition 2 for the above output space split to achieve differential privacy.

4.1.1 for all $O \in \Omega_2$

Since $\forall O \in \Omega_1$, where $s_k \in O$, we have $Pr[R(D') = O] = 0$. Thus, the probability $Pr[R(D') \in \Omega_1]$ is also equal to 0. We now compute the probability $Pr[R(D) \in \Omega_1]$.

Specifically, to generate any possible output O including user-ID s_k from D, the probability $Pr[R(D) = O]$ (where $O \in \Omega_1$) is equal to the probability that “s_k is sampled at least once in the multinomial sampling process of all the query-url pairs in A_k”. For every query-url pair $(q_i, u_j) \in A_k$, if its total output count in the sampling is x_{ij}, the probability that s_k is not sampled in a single multinomial trial (a user-ID in D except s_k is sampled) is $\frac{c_{ijk}}{c_{ij} - 1}$ simply because user s_k holds (q_i, u_j) with the count c_{ijk} and the total count of (q_i, u_j) is c_{ij} in the input D. Since $\forall (q_i, u_j) \in A_k$ may lead to that s_k being sampled and the multinomial sampling for every query-url pair (q_i, u_j) includes x_{ij} independent trials, we have $Pr[s_k = o]$ is not sampled) $= \prod_{(q_i, u_j) \in A_k}(\frac{c_{ij} - c_{ijk}}{c_{j}})^{x_{ij}}$.

Finally, we can obtain the probability that s_k is sampled at least once: $Pr[s_k = o]$ is sampled) $= 1 - \prod_{(q_i, u_j) \in A_k}(\frac{c_{ij} - c_{ijk}}{c_{j}})^{x_{ij}}$. Thus, we can derive $Pr[R(D) \in \Omega_1]$ as below:

$$Pr[R(D) \in \Omega] = 1 - \prod_{(q_i, u_j) \in A_k}(\frac{c_{ij} - c_{ijk}}{c_{j}})^{x_{ij}} \tag{2}$$

Note that for any query-url pair $(q_i, u_j) \in A_k$ where $c_{ijk} = (q_i, u_j)$ is unique and only belongs to user s_k, if its output count $x_{ij} > 0$, the probability $Pr[R(D) \in \Omega]$ should be equal to 1 which cannot be bounded. Therefore, we let $x_{ij} = 0$ for this case and all the unique query-url pairs in the input should be removed.

4.1.2 for all $O \in \Omega_2$

For any output $O \in \Omega_2$, we discuss the ratios $\frac{Pr[R(D') = O]}{Pr[R(D') = O]}$ and $\frac{Pr[R(D') = O]}{Pr[R(D') = O]}$ (since O does not include the user-ID s_k, we have $Pr[R(D) = O] > 0$ and $Pr[R(D') = O] > 0$).

Intuitively, for all query-url pairs that belong to both A_k and D', sampling user-IDs from D involves an additional user-ID s_k (but $s_k \not \in O$) compared with sampling user-IDs from D'. We thus have $Pr[R(D) = O] = Pr[R(D' = O)]$.

Since the ratio $Pr[R(D) = O]/Pr[R(D') = O]$ is bounded by 1 (and obviously ϵ'), we only need to derive and bound the ratio $Pr[R(D') = O]/Pr[R(D') = O]$. As mentioned in Section 4.1.1, all the query-url pairs in D (and A_k) but not in D' should be not be retained in the output. Thus, to generate O from D, we only sample user-IDs for the common query-url pairs in D and D'. Two categories of common query-url pairs can be identified:

(1) $\forall (q_i, u_j) \in D'$ but not in A_k, the probabilities of sampling user-IDs for (q_i, u_j) from D and D' are equivalent because the query-url-user histograms w.r.t. these query-url pairs in D and D' are identical. We denote the ratio of these two probabilities as $Pr[R(D') = O]/Pr[R(D') = O]$ for (i, j) that is equal to 1.

(2) $\forall (q_i, u_j) \in D'$ and also in A_k, we can consider every sampled user-ID in the process of $R(D)$ to O into two cases: “s_k is sampled or not”. In every multinomial trial for (q_i, u_j), the probability of sampling s_k is $\frac{c_{ijk}}{c_{ij}}$ while the probability of sampling another user-ID in D (also in D') is $1 - \frac{c_{ijk}}{c_{ij}}$. Since the number of (q_i, u_j) in the output is x_{ij} (x_{ij} times independent trials), we have ratio $Pr[R(D') = O]/Pr[R(D') = O]$ for (i, j):

$$\frac{Pr[R(D') = O]/Pr[R(D') = O]}{Pr[R(D') = O]/Pr[R(D') = O]} = \left(\frac{c_{ijk}}{c_{ij} - c_{ijk}} \right)^{x_{ij}} \tag{3}$$

In sum, to generate any output $O \in \Omega_2$ from D and D' respectively, it is independent to sample user-IDs for all the above two categories of query-url pairs. Thus, $\forall O \in \Omega_2$, $Pr[R(D') = O]/Pr[R(D') = O] = \prod_{(q_i, u_j) \in D'}Pr[R(D') = O]/Pr[R(D') = O]$ for (i, j). Due to $\forall (q_i, u_j) \in D'$ but not A_k, $\frac{Pr[R(D') = O]/Pr[R(D') = O]}{Pr[R(D') = O]} = 1$, we have for all $O \in \Omega_2$:

$$Pr[R(D') = O]/Pr[R(D') = O] = \prod_{(q_i, u_j) \in D' \cap A_k}(\frac{c_{ij} - c_{ijk}}{c_{j}})^{x_{ij}} \tag{3}$$
4.2 Differential Privacy Constraints

After representing all the probabilities in a corresponding output space split, we now show that proving the randomization algorithm to be (ϵ, δ)-probabilistic differentially private per Definition 2 is equivalent to ensuring that the output counts of all query-url pairs satisfy a set of conditions. Theorem 1 is proven in Appendix A.

Theorem 1. Randomization R achieves (ϵ, δ)-probabilistic differential privacy if for any input search log D, the output counts of query-url pairs $x = \{\forall (q_i, u_j) \in D, x_{ij}\}$ satisfy:

1. if \exists triplet $(q_i, u_j, a_k) \in D$ such that $c_{ijk} = c_{ij}$, then $x_{ij} = 0$ (do not output unique query-url pairs);
2. for all $A_k \subset D$: $\prod_{\forall (q_i, u_j) \in A_k} \left(\frac{c_{ij}}{c_{ijk}}\right)^{x_{ij}} \leq e^\epsilon$;
3. for all $A_k \subset D$: $1 - \prod_{\forall (q_i, u_j) \in A_k} \left(\frac{c_{ij}}{c_{ijk}}\right)^{x_{ij}} \leq \delta$.

As a result, we can utilize these conditions to formulate utility-maximizing problems in our differentially private search log sanitization. Specifically, we can implement Condition 1 while preprocessing the input search log (removing all the unique query-url pairs), and regard Condition 2 and 3 as **Differential Privacy Constraints** in the sanitization. On the satisfaction of them, the sanitization should be (ϵ, δ)-probabilistic differential private for every pair of neighboring search logs that differs in only one user log.

Note that while our multinomial sampling process is differentially private, the computation of the counts $\{x^* = \{\forall x_{ij}^*\}\}$ is not always necessarily so. To make the whole (end-to-end) sanitization differentially private, we must ensure that the count computation step is also differentially private. One simple way to do this is to use the generic way of adding Laplacian noise to the optimal count of every query-url. Specifically, similar to Korolova et al. [20], if the count differences of every query-url pair (q_i, u_j) in the optimal solutions derived from two neighboring inputs (D, D') are bounded by a constant d, computing optimal counts can be guaranteed to be ϵ'-differentially private [20] (ϵ' is the parameter of ensuring differential privacy for such step) by adding Laplacian noise to the optimal count of every query-url pair: $\forall (q_i, u_j), x_{ij}^* \leftarrow x_{ij}^* + \text{Lap}(d/\epsilon')$. Indeed, given d, we can simply bound the difference of every query-url pair’s optimal count (computed from any two neighboring inputs) with a preprocessing procedure by examining every user log A_k in the input database D (w.o.l.g. $D = D' + A_k$):

1. formulate two utility-maximizing problems (pick the same option as the following sanitization) with the neighboring inputs D and $D' = D - A_k$ respectively, and solve them.
2. if the count difference of any query-url pair in both optimal solutions is greater than d, remove A_k from D and restart the preprocessing procedure with input $D - A_k$ (reexaming all the user logs in the updated input $D - A_k$).

Since the above preprocessing procedure iteratively examines every user log A_k in the input search log D (if A_k causes an unbounded optimal count difference, A_k will be removed and the preprocessing procedure restarts), the optimal counts computed from any two neighboring inputs D and $D' = D - A_k$ should be bounded: first, in case of any removal of A_k from D, restarting the procedure with the updated input $D - A_k$ is identical to starting the procedure with input D' due to $D' = D - A_k$, thus the optimal counts derived from inputs D and D' are identical and definitely bounded by d; second, if there is no user log removed from D in the preprocessing procedure (the best case), the optimal counts derived from D and D' from any neighboring inputs $D - A_k$ are bounded by d (note that if $D' = D + A_k$, preprocessing D' could bound the optimal count difference for D and D'). Essentially, such preprocessing procedure requires solving $2N$ optimization (LP) problems in the best case and $N(N+1)$ optimization (LP) problems in the worst case (this seldom happens) where N refers to the number of users in the input D, thus the efficiency can be maintained with this additional preprocessing procedure.

Overall, adding noise Lap(d/ϵ') can ensure ϵ'-differential privacy [20] for the step of computing optimal counts in Algorithm 1. While adding noise may distort the optimality to some extent, this is the price of guaranteeing complete differential privacy. Since adding Laplacian noise is a well-studied generic approach, we do not discuss this differential privacy guarantee due to space limitation, and the sanitization algorithm refers to the sampling process in this paper.

4.3 Indistinguishability Differential Privacy

Recall that in Section 3.1, we have noted that probabilistic differential privacy [24, 12] provides stronger privacy guarantee than indistinguishability differential privacy [7, 20]. Particularly, the probabilistic differential privacy notion (Definition 2) has following property:

Proposition 1. [12] Probabilistic differential privacy implies indistinguishability differential privacy: if all the conditions in Definition 2 are satisfied with parameters (ϵ, δ), the following two inequalities also hold:

1. $\Pr[R(D') \in \hat{O}] \leq e^\epsilon \cdot \Pr[R(D) \in \hat{O}] + \delta$;
2. $\Pr[R(D) \in \hat{O}] \leq e^\epsilon \cdot \Pr[R(D') \in \hat{O}] + \delta$.

where \hat{O} is an arbitrary set of possible outputs and $\hat{O} \subseteq \Omega$.

Götz et al. have proven Proposition 1 and show that the converse of it does not hold in [12]. Hence, satisfying Definition 2 with the differential privacy constraints (Theorem 1) provides more rigorous privacy guarantee than the work of Korolova et al. [20].

5. Utility-Maximizing Problems

While search logs consist of millions of queries and click-through urls, from the perspective of utility, clearly, all are not equal. Indeed, from an application perspective, only a small portion may be useful with regards to a specific purpose. For instance, only the frequent query-url pairs are useful for query recommendation. Hence, different data usage purposes may result in different requirements for extracting data from the original search log. To privately sanitize search logs while retaining maximal utility, we need to evaluate the data utility according to the usage requirement. In this section, we introduce three utility-maximizing problems with three different utility definitions.
5.1 Maximizing the Output Size

As stated in Theorem 1, our sanitization algorithm satisfies (ϵ, δ)-probabilistic differential privacy if three conditions for the output counts of all query-url pairs are satisfied. Specifically, Condition 1 should be implemented in the preprocessing step\(^1\) while Conditions 2 and 3 give two sets of constraints for the output counts of all query-url pairs, \(x = \{x_{ij}\}\):\[
\forall A_k \subset D, \prod_{\forall (q_i, u_j) \in A_k} (\frac{c_{q_i u_j}}{\epsilon_{q_i u_j}})^{x_{ij}} \leq e^\epsilon \\
\text{s.t.} \\
\forall A_k \subset D, 1 - \prod_{\forall (q_i, u_j) \in A_k} (\frac{c_{q_i u_j}}{\epsilon_{q_i u_j}})^{x_{ij}} \leq \delta \\
\forall x_{ij} \geq 0 \text{ and } x_{ij} \text{ is an integer}
\]

Intuitively, the above constraints can be transformed into linear constraints: (constant \(t_{jk} = \frac{c_{q_i u_j}}{\epsilon_{q_i u_j}}\); each user log \(A_k\’s\) two constraints can be combined as \(\min(\epsilon, \log \frac{t_{jk}}{\delta})\))\[
\forall A_k \subset D, \sum_{\forall (q_i, u_j) \in A_k} x_{ij} \cdot \log t_{jk} \leq \min(\epsilon, \log \frac{1}{\delta}) \\
\forall x_{ij} \geq 0 \text{ and } x_{ij} \text{ is an integer}
\]

In the above differential privacy constraints (each user log generates a constraint): due to \(t_{jk} = \frac{c_{q_i u_j}}{\epsilon_{q_i u_j}} > 1\), the coefficient of all the linear constraints \(\forall \log t_{jk}\) should be greater than 0 (all unique query-url pairs have been removed). Letting \(Mx \leq b\) be the above differential privacy constraints, all the elements in the constraint matrix \(M\) are non-negative and all the elements in \(b\) are equal to \(\min(\epsilon, \log \frac{1}{\delta})\). Thus, we have:

Statement 1. Differential privacy constraints (Equation 4) are always feasible and bounded.

The above property holds from the geometric viewpoint of linear constraints. Specifically, linear constraints \(\{Mx \leq b, x \geq 0, b > 0\}\) form a convex polytope, which is always feasible and bounded if \(M, b \geq 0\) [26].

One interesting point worth noting is that the size of the output (the total number of all users’ query-url pairs in the output) is bounded by the differential privacy constraints. If we regard the output size \(\sum_{\forall (q_i, u_j) \in D} x_{ij}\) as the utility objective function, we can use the following problem to seek the optimal output utility:

\[
\text{max : } \sum_{\forall (q_i, u_j) \in D} x_{ij} \\
\text{s.t.} \\
\forall x_{ij} \geq 0 \text{ and } x_{ij} \text{ is an integer}
\]

We define this as “Output size Utility-Maximizing Problem” (O-UMP). Since it is an integer linear programming (ILP) problem, we can solve it using some standard method (such as simplex algorithm) with linear relaxation [26] (the LP problem is always feasible and bounded). After solving it (optimal solution \(x^* = \{x^*_i\}\)), for every \((q_i, u_j)\), we sample user-IDs with \([x^*_i]\) times multinomial trials (the input query-url-user histogram provides the probability of every sampled outcome in every trial). The sanitization algorithm satisfies Definition 2 (Proof in Appendix C).

\(^1\)For all unique query-url pairs, we let the output count be 0 (for satisfying Condition 1 in Theorem 1).

Lemma 1. The O-UMP based sanitization algorithm satisfies (ϵ, δ)-probabilistic differential privacy.

Since the optimal solution \(x^* = \{x^*_i\}\) satisfies the differential privacy constraints, the randomization algorithm based on the linear relaxed solution should be also differentially private \(((\forall x^*_i) \leq x_i)\), thus \(\forall x^*_i\) strictly satisfies the constraints \(Mx \leq b\) where \(M, b \geq 0\). Note that if we require adding Laplacian noise to \(\{x^*_i\}\) to ensure differential privacy for the step of computing optimal counts, we cannot always guarantee that the noise-added optimal solution satisfies the differential privacy constraints, though this is likely (since the mean of added Laplacian noise is 0). Meanwhile, since the amount of noise \(\text{Lap}(d/\epsilon')\) is directly proportional to \(d\) (privacy parameter \(\epsilon'\) is fixed), \(d\) can be lowered to the preferred value (reducing the sensitivity/amount of noise) to gain closer approximation of strict end-to-end differential privacy. These apply to all the utility-maximizing problems.

5.2 Maximizing the Utility of Frequent query-url Pairs

Top frequent click-through pairs in search logs have better utility [14] than abnormal query-url pairs for improving the quality of search results or enforcing the search with recommendations and suggestions. Retaining frequent query-url pairs in the sanitized search logs can be a basic and practical goal of seeking the optimal output utility in the sanitization. We denote this problem as “Frequent query-url pair Utility-Maximizing Problem” (F-UMP).

First of all, we denote \(|D|\) as the size (the total number of query-url pairs) of the input search log \(D\). Thus, frequent query-url pairs can be identified using its **Support** in \(D\): given a minimum support threshold \(s\), if \(|D| \geq s\), then \((q_i, u_j)\) is a frequent click-through query-url pair in \(D\). Since the support of a frequent query-url pair explicitly indicates its importance in the search log, the support of all the frequent query-url pairs should be preserved as much as possible. In other words, the support of every frequent query-url pair in the output \(O\) should be close to its support in the input \(D\) (\(|O|\) does not include the number of unique query-url pairs which should be removed in the preprocessing step).

Thus, we can define the objective function as minimizing the sum of support distances for all the “frequent query-url pairs” in the input database \(D\), and formulate F-UMP as:

\[
\text{min : } \sum_{\forall (q_i, u_j) \in D} \frac{||x_{ij} - c_{ij}|}{|D|} \\
\text{s.t.} \\
\forall A_k \subset D, \sum_{\forall (q_i, u_j) \in A_k} x_{ij} \cdot \log t_{jk} \leq \min(\epsilon, \log \frac{1}{\delta}) \\
\forall x_{ij} \geq 0 \text{ and } x_{ij} \text{ is an integer}
\]

where \(|O| = \sum_{\forall (q_i, u_j) \in D} x_{ij}\) is the size of the output \(O\).

Generally, since every query-url pair’s support in \(D\) and \(O\) are two ratios, pursuing the minimized sum of support distances (our objective in F-UMP) cannot always guarantee an output with good frequent query-url pair utility (i.e. the number of all frequent query-url pairs are very small, but the support of them are close to the original one). Alternatively, we can specify a fixed output size \(|O|\) in the sanitization and seek the optimal utility for the frequent query-url pairs. Recall that O-UMP can generate the output with the maximum size for any input \(D\) and fixed parameters \((\epsilon, \delta)\).
(we denote the maximum output size as \(\lambda \)). Thus, to preserve sufficient output size, we can solve the F-UMP with a specified constant output size \(|O| \in [0, \lambda] \).

Statement 2. F-UMP can be considered as an integer linear programming (ILP) problem if we fix the output size \(|O| \) as a constant and standardize the absolute values in the objective function.

First, due to \(|O| = \sum_{(q_i, u_j) \in D} x_{i,j} \) if we specify the size of the output in the sanitization, \(\frac{c_{i,j}}{|O|} \) can be considered as linear. Second, we can transform the absolute values in the objective function in a standard way:

1. create a new variable \(y_{i,j} \) for every frequent query-url pair \(q_i, u_j \) where \(\frac{c_{i,j}}{|O|} \geq s \): \(y_{i,j} = \frac{c_{i,j}}{|O|} - \frac{c_{i,j}}{|O|} \).
2. generate two new constraints for every \(y_{i,j} \): \(y_{i,j} \geq \frac{c_{i,j}}{|O|} - \frac{c_{i,j}}{|O|} \) and \(y_{i,j} \geq \frac{c_{i,j}}{|O|} - \frac{c_{i,j}}{|O|} \).

As a result, F-UMP can be transformed into an integer linear programming (ILP) problem as below:

\[
\begin{align*}
\text{min} : & \quad \sum_{(q_i, u_j) \in D} y_{i,j} \\
\text{s.t.:} & \quad \forall A_k \subset D, \sum_{(q_i, u_j) \in A_k} x_{i,j} \cdot \log t_{i,j,k} \leq \log \epsilon, \log \frac{1}{\delta} \\
& \quad \forall (q_i, u_j) \text{ where } \frac{c_{i,j}}{|O|} \geq s, y_{i,j} \geq \frac{c_{i,j}}{|O|} - \frac{c_{i,j}}{|O|} \\
& \quad \forall (q_i, u_j) \text{ where } \frac{c_{i,j}}{|O|} \geq s, y_{i,j} \geq \frac{c_{i,j}}{|O|} - \frac{c_{i,j}}{|O|} \\
& \quad x_{i,j} \geq 0 \text{ and } x_{i,j} \text{ is an integer}
\end{align*}
\]

Similar to O-UMP, we can solve the above ILP problem using some standard methods such as Simplex algorithm with linear relaxation [32] (if \(|O| \) is specified to be no greater than \(\lambda \), the ILP problem should be feasible and bounded).

Overall, in F-UMP based sanitization, we can specify an appropriate output size \(|O| \in [0, \lambda] \), solve the ILP problem (optimal solution \(x^* \{X^*_{i,j} \} \)) and generate the optimal output utility: the Input/Output Support of all the frequent query-url pairs tends to be close (only counting the non-unique query-url pairs) and the output size can be assured as well. Finally, we sample the output with the optimal solution of F-UMP: for every \((q_i, u_j) \) (either frequent or infrequent), we sample user-IDs with \(|X^*_{i,j}| \) times multinomial trials (equally, the input query-url-user histogram provides the probability of every sampled outcome in every trial).

As discussed in Section 3.2, the shape of query-url-user histogram can be preserved in this problem based sanitization algorithm. Also, the sanitization algorithm satisfies Definition 2 (Proof in Appendix C).

Lemma 2. The F-UMP based sanitization algorithm satisfies \((\epsilon, \delta)\)-probabilistic differential privacy.

5.3 Maximizing query-url Pair Diversity

Occasionally, more distinct query-url pairs exhibit better utility, we can formulate the "Diversity Utility-Maximizing Problem" (D-UMP) in search log sanitization. The diversity of search logs normally has two facts: the diversity of search queries and the diversity of query-url pairs. Since we investigate the potential privacy breach from every query-url pair (finer-grained than search queries), we denote the diversity utility of search logs as the number of distinct query-url pairs. (Indeed, we can also model search query diversity maximizing problem in a similar way.)

In our sanitization, \(x_{i,j} \) denotes the count of query-url pair \((q_i, u_j)\) in the output \(O \). To evaluate the output diversity, we can introduce another variable \(y_{i,j} \) for every \(x_{i,j} \).

\[
\begin{align*}
y_{i,j} = 1, & \quad \text{if } x_{i,j} > 0 \\
y_{i,j} = 0, & \quad \text{if } x_{i,j} = 0
\end{align*}
\]

We thus define the utility function as \(\max : \sum y_{i,j} \). Moreover, given a large constant \(H \geq \max \{y_{i,j} \} \), Equation (5) is guaranteed to hold by the following inequalities:

\[
\begin{align*}
\forall (q_i, u_j), & \quad x_{i,j} \leq y_{i,j} \cdot H \\
y_{i,j} \in \{0, 1\}, & \quad H \geq \max \{y_{i,j} \}
\end{align*}
\]

Similarly, D-UMP can be mathematically modeled as:

\[
\begin{align*}
\text{max} : & \quad \sum_{(q_i, u_j) \in D} y_{i,j} \\
\text{s.t.:} & \quad \forall A_k \subset D, \sum_{(q_i, u_j) \in A_k} x_{i,j} \cdot \log t_{i,j,k} \leq \min \{\epsilon, \log \frac{1}{\delta} \} \\
& \quad \forall (q_i, u_j) \text{ where } \frac{c_{i,j}}{|O|} \geq s, y_{i,j} \geq \frac{c_{i,j}}{|O|} - \frac{c_{i,j}}{|O|} \\
& \quad \forall (q_i, u_j) \text{ where } \frac{c_{i,j}}{|O|} \geq s, y_{i,j} \geq \frac{c_{i,j}}{|O|} - \frac{c_{i,j}}{|O|} \\
& \quad x_{i,j} \geq 0 \text{ and } x_{i,j} \text{ is an integer}
\end{align*}
\]

Essentially, letting \(\forall x_{i,j} \in \{0, 1\} \) and \(x_{i,j} = y_{i,j} \), the above mixed integer programming (MIP) problem can be transformed to a simplified binary integer programming (BIP) problem (see Equation 7). Both problems have the same optimal solution for variables \(y = \{y_{i,j}\} \). (We prove Theorem 2 in Appendix B)

Theorem 2. The optimal solution \(y^* = \{y^*_{i,j}\} \) of the BIP problem is equivalent to the values \(\{y^*_{i,j}\} \) in the optimal solution \(\{x^*, y^*\} \) of the MIP problem.

\[
\begin{align*}
\text{max} : & \quad \sum_{(q_i, u_j) \in D} y_{i,j} \\
\text{s.t.:} & \quad \forall A_k \subset D, \sum_{(q_i, u_j) \in A_k} y_{i,j} \cdot \log t_{i,j,k} \leq \min \{\epsilon, \log \frac{1}{\delta} \} \\
& \quad H \geq \max \{y_{i,j} \}, y_{i,j} \in \{0, 1\}
\end{align*}
\]

After solving the simpler BIP problem rather than the MIP problem (both integer programming problems are feasible), we thus let \(\forall (q_i, u_j) \in D, x_{i,j} = y_{i,j} \in \{0, 1\} \) be the optimal solution of D-UMP (sampling user-IDs in only one trial for every query-url pair in the output). Similarly, the input query-url-user histogram provides the probability of every sampled outcome in one trial.

However, both BIP and MIP problem are NP-hard [36]. For large-scale D-UMP, we propose an effective and efficient heuristic algorithm to solve the BIP problem in Algorithm 2. It seeks an approximate optimal value for the BIP problem. We iteratively remove sensitive query-url pairs (let \(y_{i,j} = 0 \) if \(y_{i,j} \) has a maximum positive coefficient \(t_{i,j,k} \) in the sparse constraint matrix). We eliminate these query-url pairs since they belong to a certain user with the highest percent in the count histogram of the triplets query-url-user (sensitive to the corresponding user. i.e. if user \(s_k \) holds 90% of \((q_i, u_j), t_{i,j,k} \) should be large). The algorithm terminates until all the differential privacy constraints are satisfied.

The sanitization algorithm based on D-UMP also satisfies Definition 2. (Proof in Appendix C)
6. EXPERIMENTAL RESULTS

6.1 Experiment Setup

Dataset. We utilize the AOL real search log [3, 13] to test our utility-maximizing problems. Our experimental dataset is extracted from one subset of AOL data. Specifically, we randomly pick 2500 out of over 65000 user logs in the selected AOL data. We remove all the unique query-url pairs (posed by only one user) from the selected dataset in our preprocessing step. Thus, Table 2 presents the characteristics of the AOL dataset (only collect the tuples with clicks), our randomly selected dataset and the preprocessed dataset.

6043 distinct query-url pairs is held by 1980 users in the preprocessed dataset (since search logs which are extremely diverse include large number of unique query-url pairs, most of the existing work [20, 12] cannot maintain the entire output diversity either). Thus, we have 6043 variables and 1980 differential privacy constraints in our UMPs.

Table 2: Characteristics of the Data Sets

<table>
<thead>
<tr>
<th></th>
<th>AOL Dataset</th>
<th>Exp. Preprocessed Dataset</th>
<th>(without unique pairs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>total tuples</td>
<td>1,864,860</td>
<td>237,786</td>
<td>53,067 (</td>
</tr>
<tr>
<td>user logs</td>
<td>51,922</td>
<td>2,500</td>
<td>1,980 (Constraints)</td>
</tr>
<tr>
<td>distinct urls</td>
<td>583,084</td>
<td>83,130</td>
<td>4,971</td>
</tr>
<tr>
<td>query-url pairs</td>
<td>1,190,491</td>
<td>163,681</td>
<td>6,043 (Variables)</td>
</tr>
</tbody>
</table>

Parameters Setup. To observe the tuning of differential privacy parameters (ε, δ), we let δ = {10⁻¹, 10⁻³, 10⁻², 10⁻¹, 0.2, 0.5, 0.8} and ε' = {1.001, 1.01, 1.1, 1.4, 1.7, 2.0, 2.3} in all three utility-maximizing problems. Furthermore, F-UMP requires two additional parameters: the minimum support s and the output size |O| (|O| ≤ λ and λ is given as the optimal value of O-UMP). Let s = {1/100, 1/300, 1/500, 1/750, 1/1000}. For every pair of ε and δ, we compute λ in O-UMP and specify an appropriate output size |O| in F-UMP.

Platform. All the experiments are performed on an HP machine with Intel Core 2 Duo CPU 3GHz and 3G RAM running Microsoft Windows XP Professional Operating system. While solving D-UMP, we also submit the AMPL format of the BIP problems to three NEOS solvers (qsoplex, scip and feaspump [18]) running online in addition to locally running our heuristic.

6.2 Maximum Output Size λ

With the preprocessed dataset (|D| = 53067 as shown in Table 2), we can compute the maximum output size λ using O-UMP for a given pair of differential privacy parameters (ε', δ). Table 3 presents the maximum output size (the optimal value of O-UMP) for different pairs of (ε', δ) where O-UMP is solved by Matlab functionlinprog. We can obtain 7.08%-26.2% of the original size with the given parameters. Due to the high diversity and sparseness of search log data, this percent of output size is sufficient good for differential privacy guaranteed sanitization algorithms.

Table 3: Max Output Size λ on ε' and δ (|D| = 53067)

<table>
<thead>
<tr>
<th>ε'</th>
<th>δ</th>
<th>truesize</th>
<th>0.2</th>
<th>0.5</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.001</td>
<td>1.001</td>
<td>3,759</td>
<td>4,007</td>
<td>4,007</td>
<td>4,007</td>
</tr>
<tr>
<td>1.01</td>
<td>3.759</td>
<td>4,007</td>
<td>4,007</td>
<td>4,007</td>
<td>4,007</td>
</tr>
<tr>
<td>1.1</td>
<td>3.759</td>
<td>4,007</td>
<td>4,879</td>
<td>4,879</td>
<td>4,879</td>
</tr>
<tr>
<td>1.4</td>
<td>3.759</td>
<td>4,007</td>
<td>4,891</td>
<td>8,382</td>
<td>8,382</td>
</tr>
<tr>
<td>1.7</td>
<td>3.759</td>
<td>4,007</td>
<td>4,891</td>
<td>8,382</td>
<td>8,382</td>
</tr>
<tr>
<td>2.0</td>
<td>3.759</td>
<td>4,007</td>
<td>4,891</td>
<td>8,382</td>
<td>8,382</td>
</tr>
<tr>
<td>2.3</td>
<td>3.759</td>
<td>4,007</td>
<td>4,891</td>
<td>8,382</td>
<td>8,382</td>
</tr>
</tbody>
</table>

6.3 Maximum Utility Derived by F-UMP

Recall that F-UMP based sanitization generates outputs with the minimum sum of the support distances of all the frequent query-url pairs. Thus, we examine the maximum frequent query-url pairs utility with three measures: the optimal value of F-UMP (minimum sum of the support distances), the Precision and Recall of the frequent query-url pairs in the output/input, defined as below:

Precision = |S₀ ∩ S| / |S₀|, Recall = |S₀ ∩ S| / |S| (8)

where S₀ and S denote the set of frequent query-url pairs in D and O respectively, and |·| means the cardinality of the set. Specifically, Precision is defined to evaluate the fraction of the frequent query-url pairs in the output that are originally frequent in the input with the same minimum support. Recall is defined to evaluate the fraction of the frequent query-url pairs in the input that remains frequent in the output with the same minimum support.

To evaluate the performance of F-UMP in differentially private search log sanitization, we run two groups of experiments. First, we fix the output size and the minimum support as: |O| = 3000 < λ and s = 1/100, and test the (measurement) results with different pairs of (ε, δ). Second, we fix the differential privacy parameters as: ε' = 2, δ = 0.5 (λ = 13088, as shown in Table 3), and test the results with different minimum support s and output size |O|. Note that the minimum sum of support distances is an effective measure in the first group of experiments because the minimum support s is fixed and the original frequent query-url pairs in the input has been determined for all different pairs of ε and δ (thus the sum of the support distances for all the frequent query-url pairs in the input is comparable). However, in the second group, the set of original frequent query-url pairs is varying for different s, hence the objective values of F-UMP is incomparable on a varying s. Therefore, we use the average of the support distances for all the frequent query-url pairs in the input in addition to the sum of them in the second group of experiments.

Interestingly, in all our F-UMP experiments, Precision is always equal to 1, which means all the frequent query-url pairs are retained in the output.
pairs in the output are also frequent in the input with the same minimum support s. This is quite reasonable: suppose that (q_i, u_j) is not a frequent query-url pair in the input where $\frac{x_{ij}}{|O|} < s$, if it is frequent in the output where $\frac{x_{ij}}{|O|} \geq s$, the solution of F-UMP must be not optimal (reducing $\frac{x_{ij}}{|O|}$ to $\frac{c_{ij}}{|O|}$ might improve the objective value and does not violate differential privacy constraints).

In the first group of experiments, Figure 2(a) and 2(b) demonstrate the Recall and Sum of the Support Distances for all the frequent query-url pairs in the input. Fixing δ, Recall increases as ϵ increases until $\epsilon = \log \frac{s}{|O|}$. Fixing $\epsilon \geq \log \frac{1}{|O|}$, Recall increases as δ increases; fixing $\epsilon < \log \frac{1}{|O|}$, Recall stays invariant even if δ is increasing. By contrast, the sum of support distances has an inverse increasing trend on varying ϵ and δ.

Table 4: Recall on $|O|$ and s ($\epsilon = 2$, $\delta = 0.5$, $\lambda = 13088$)

| $|O|$ | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 |
|------|------|------|------|------|------|------|
| ϵ | δ | 0.8873 | 0.8189 | 0.874 | 0.8661 | 0.8583 | 0.8346 |
| δ | 0.8095 | 0.8762 | 0.8571 | 0.8476 | 0.8952 | 0.8667 |
| λ | 0.9143 | 0.9143 | 0.9286 | 0.9143 | 0.8857 | 0.8714 |
| ν | 0.9116 | 0.8529 | 0.8529 | 0.8529 | 0.8529 | 0.8235 |
| ξ | 0.933 | 0.8667 | 0.8 | 0.8 | 0.8 | 0.7333 |

In the second group of experiments, Table 4 presents the Recall on different pairs of outputs size and minimum support. As we can see, over 80% of the frequent query-url pairs can be retained in the output with fixing $\epsilon' = 2$ and $\delta = 0.5$ (given more strict ϵ' and δ, 30% of them can be retained as shown in Figure 2(a)). In addition, Table 5 illustrates the sum of support distances for all frequent query-url pairs in the input (the same $|O|$ and s as Table 4). Fixing s, the sum of support distances increases as the output size increases (they are comparable due to fixed s). This fact is true: given a fixed minimum support s, for the fixed set of frequent query-url pairs in the input, it is easier to satisfy the minimum support without violating differential privacy constraints when $|O|$ is not too large (the ideal output count x_{ij} is $|O| \frac{x_{ij}}{|O|}$ and the output counts are bounded by privacy constraints, thus all frequent query-url pairs $\forall x_{ij}$ are likely to achieve $|O| \cdot \frac{x_{ij}}{|O|}$ if $|O|$ is small). Finally, since the set of frequent query-url pairs varies for different s, we compare the average support distance instead of the sum of them for different s. As shown in Figure 2(c), the average support distance decreases as the minimum support s increases (logarithmic scale minimum support s). Therefore, the frequent query-url pairs in the output is closer to them in the input if a larger minimum support is given in the F-UMP.

Table 5: Sum of Freq. query-url Pair Support Distances on $|O|$ and s ($\epsilon = 2$, $\delta = 0.5$, $\lambda = 13088$)

| $|O|$ | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 |
|------|------|------|------|------|------|------|
| ϵ | δ | 0.0551 | 0.0854 | 0.1065 | 0.1279 | 0.1485 | 0.1785 |
| δ | 0.0549 | 0.0854 | 0.1161 | 0.1271 | 0.1477 | 0.1776 |
| λ | 0.0559 | 0.0865 | 0.1048 | 0.1247 | 0.1448 | 0.1716 |
| ν | 0.0555 | 0.0865 | 0.1043 | 0.1236 | 0.1393 | 0.161 |
| ξ | 0.0574 | 0.0885 | 0.1063 | 0.1246 | 0.1392 | 0.1583 |

6.4 Maximum query-url Pair Diversity

6.4.1 D-UMP Performance

We now look at the performance of D-UMP (maximum diversity utility). Figure 3 shows the percentage of retained query-url pairs in the output with the same parameters (ϵ, δ) as F-UMP. The maximum query-url diversity has a similar increasing trend as the Recall of F-UMP (Figure 2(a)). Moreover, the query-url diversity can be retained as high as 30%. Note that the input has been preprocessed by removing all the unique query-url pairs, and they are not counted in the denominator of the ratio.

6.4.2 BIP Solver Comparison

Since D-UMP is an NP-hard problem, we introduced an effective heuristic algorithm (Algorithm 2) for this binary integer programming (BIP) problem with a sparse non-negative constraint matrix. We now compare the performance of our Sensitive Pair Eliminating heuristic (SPE) with some popular BIP solvers (Matlab bintprog function, Neos qsoptex, Neos scip and Neos fesfump [18]).

As shown in Table 6, we collected the maximum percent of retained distinct query-url pairs using all the solvers with the same experimental inputs. We observe that our heuristic algorithm performs better than other solvers in most cases and the optimal values by all the solvers have quite similar varying tendency. Specifically, Algorithm 2 generates sanitized search logs with greater query-url pair diversity than
Matlab bintprog, NEOS qsopt and Neos scip. NEOS feaspump performs slightly better than Algorithm 2 only when $e^* = 2$, $\delta = 0.5$ and $e^* = 1.1$, $\delta = 0.1$.

Finally, we plot the runtime for solving a typical D-UMP by all solvers in Figure 5 ($e^* = 1.7, \delta = 10^{-3}$). Since our Sensitive query-url Pair Eliminating (SPE) heuristic consumes complexity $O(n^2 \log mn)$ ($m \times n$ constraint matrix), it outperforms other solvers on runtime as well.

6.5 Difference of Input/Output Histograms

As described in Section 3.2, our multinomial sampling, particularly the F-UMP based sanitization can retain the shape of the histograms in the output (generate similar count histograms for distinct triplets: query-url-user (q_i, u_j, s_k)). We now examine this by comparing two histograms.

Specifically, we generate 10 randomized outputs with the optimal solution of F-UMP for two different output size $|O| = 4000$ and 6000 respectively (fixing $e^* = 2$, $\delta = 0.5$, $s = 1/500$), and plot two bar plots in Figure 4: the X-axis varies from 0% to 100% while the Y-axis represents the average number of distinct triplets $(q_i, u_j, s_k)^O$ whose difference ratio of the input/output histograms (defined in Equation 9) equals the values in the X-axis. In both Figure 4(a) and 4(b), the percent of most triplets (q_i, u_j, s_k) in the input/output varies within a tolerable bound ($|O| = 4000$, the difference ratio of about 75% triplets is below 40%; $|O| = 6000$, the difference ratio of about 90% triplets is below 40%).

$$\text{DiffRatio}(x_{ijk}^*, c_{ijk}) = \frac{|x_{ijk}^*/|O| - c_{ijk}/|D||}{c_{ijk}/|D|}$$

(9)

7. CONCLUSION AND FUTURE WORK

In this paper, we have addressed the important practical problem of retaining the maximum utility while the search log sanitization satisfies differential privacy and generates outputs with the identical schema as the original search log. As a necessary step, we have defined three different notions of utility that are useful for various applications. The effectiveness of our approach has been validated on real datasets. We can extend our work in several directions. First, corresponding to the utility-maximizing problem, one can similarly define the privacy breach-minimizing problem which asks for minimal privacy loss while satisfying a certain utility. Second, in most of the current work on search log release, the database schema of the input and output does not include query time and the rank of the clicked url, thus it is an open problem to probe effective approaches for publishing search logs with more complex schema. Third, the adversaries may breach the privacy by inferring the correlations between users’ query-url pairs. Whether the differential privacy guaranteed sanitization algorithms can handle such potential privacy breach or not is worth investigating. We intend to explore these in the future.

8. REFERENCES

APPENDIX

A. PROOF OF THEOREM 1

Proof. Assume that D and D′ differ in an arbitrary user s_k’s user log A_k. For the above neighboring inputs, the output space \(\Omega = \Omega_1 \cup \Omega_2 \) in our sampling mechanism can be only split as below: all the possible outputs in \(\Omega_1 \) include s_k whereas all the possible outputs in \(\Omega_2 \) do not include s_k.

First, according to Equation 2, if Condition 3 holds, we have \(Pr[|R(D) \in \Omega_1|] \leq \delta \) for any input D. Meanwhile, Condition 1 guarantees that \(Pr[|R(D) \in \Omega_1|] \) can be effectively bounded by \(\delta \). Otherwise, for any unique query-url pair \((q, u_j)\), given \(x_{ij} > 0 \), \(Pr[|R(D) \in \Omega_1|] \) should be equal to 1 with such output space split (no other space split available for any pair of neighboring input search logs).

Second, for all \(O \subseteq \Omega_2 \), we have \(Pr[|R(D') = O|] > 0 \) and \(Pr[|R(D) = O|] > 0 \). If \(D' \subset D \), Condition 2 ensures \(Pr[|R(D') - O|] \leq \epsilon \). On the contrary, if \(D \subset D' \), Condition 2 derived from \(D' \) can also guarantees \(Pr[|R(D') - O|] \leq \epsilon \).

Thus, the randomization \(R \) satisfies Definition 2 (by dividing output space as above) if three conditions in the theorem hold. Note that the violation of any condition would result in unbounded multiplicative and/or additive probability difference (given \(\epsilon \) and \(\delta \)) for at least one input D and/or one of its neighboring input D' (Differential privacy will not be guaranteed), then the upper bounds \(\epsilon \) and \(\delta \) are tight.

B. PROOF OF THEOREM 2

Proof. To distinguish \(y^* \) in the optimal solutions of the BIP and MIP problem, we denote \(y^* \) in them as \((y^*)_B = \{ y_i(u_B^*) \} \) and \((y^*)_M = \{ y_i(u_M^*) \} \) respectively. Suppose that \((y^*)_B \) and \((y^*)_M \) differ in one variable: \(y_i(u_B^*) \) and \(y_i(u_M^*) \) where \(\forall z \neq i \), \(y_i(u) = (y^*)_M \).

Case 1: \((y^*_i)_B = 0 \) and \((y^*_i)_M = 1 \). Due to \((y^*_i)_M = 1 \) and \(x_{ij} \geq (y^*_i)_M \), constraints \(\forall \ A_k \subset D \), \(\sum_{q_i(u_j) \in A_k} (y^*_i)_M \cdot \log t_{ijk} \leq \min \{ \epsilon, \log \frac{1}{1-\delta} \} \) are satisfied for \((y^*)_M \). Moreover, we have \(\sum_{q_i(u_j) \in D} (y^*_i)_M \geq \sum_{q_i(u_j) \in D} (y^*_i)_B \) (because \((y^*_i)_M > (y^*_i)_B \)). As \((y^*_i)_B \) satisfies the constraints \(\forall \ A_k \subset D \), \(\sum_{q_i(u_j) \in A_k} (y^*_i)_B \cdot \log t_{ijk} \leq \min \{ \epsilon, \log \frac{1}{1-\delta} \} \) in the BIP problem, \(\sum_{q_i(u_j) \in D} (y^*_i)_M \) should be the optimal value for the BIP problem (due to \(\sum_{q_i(u_j) \in D} (y^*_i)_B > \sum_{q_i(u_j) \in D} (y^*_i)_M \)). Hence, it is a contradiction.

Case 2: \((y^*_i)_B = 1 \) and \((y^*_i)_M = 0 \). Hence, the constraints \(\forall \ A_k \subset D \), \(\sum_{q_i(u_j) \in A_k} (y^*_i)_B \cdot \log t_{ijk} \leq \min \{ \epsilon, \log \frac{1}{1-\delta} \} \) are satisfied in the BIP problem. In the MIP problem, if letting \(x_{ij} = 1 \) for all \((y^*_i)_B = 1 \), \(\forall \ A_k \subset D \), \(\sum_{q_i(u_j) \in A_k} (y^*_i)_B \cdot \log t_{ijk} \leq \min \{ \epsilon, \log \frac{1}{1-\delta} \} \) can be also satisfied. In this case, we have \(\sum_{q_i(u_j) \in D} (y^*_i)_B = \sum_{q_i(u_j) \in D} (y^*_i)_M + \sum_{q_i(u_j) \in D} (y^*_i)_M > \sum_{q_i(u_j) \in D} (y^*_i)_M \) (since \((y^*_i)_M \subset D, x_{ij} = (y^*_i)_M \)). Hence, \((y^*)_M \) is not the optimal solution of the MIP problem. It is also a contradiction.

In sum, the contradictions show that \(y^* \) in two optimal solutions are identical, and complete the proof.

C. PROOF OF LEMMA 1, 2 AND 3

Proof (Sketch). It is straightforward to prove the differential privacy for all utility-maximizing problems based sanitization algorithm: since the optimal solutions in O-UMP, F-UMP and D-UMP always satisfy the conditions in Theorem 1, the sanitization algorithm achieves \((\epsilon, \delta) \)-probabilistic differential privacy for any neighboring inputs (we can add Laplacian noise to ensure differential privacy for the step of computing the optimal counts if necessary).